MATH 231
Exercise 4

1. For the graph G of Figure 1, determine the cut-vertices, bridges, and blocks of G.

Figure 1

2. Let G be the Petersen graph. Give an example of
(a) a minimum vertex-cut in G and
(b) a vertex-cut U in G such that U is not a minimum vertex-cut of G and no proper subset of U is a vertex-cut of G.

3. Give an example of a graph G with the following properties.
(a) $\kappa(G) = 2$, $\lambda(G) = 3$, and $\delta(G) = 4$.
(b) $\kappa(G) = 2$, $\lambda(G) = 2$, and $\delta(G) = 3$.

4. In the graph H of Figure 2, the vertices represent street intersections.
(a) What is the maximum number k such that if road repairs are done at the same time to any k roads (making use of these roads impossible), then it is still possible to travel between every two intersections?
(b) What is the maximum number k such that if intersection repairs are done at the same time to any k intersections (making use of these intersections impossible), then it is still possible to travel between every two intersections that are not under repair?

Figure 2